制冷空调用换热器的高效传热技术研究

原成成, 贾立伟

(冰轮环境技术股份有限公司, 山东 烟台 264000)

摘 要 本文首先介绍了制冷空调用的常见换热器类型,包括固定板式、涡轮式、螺旋式和冷凝器,探讨了提高传热效率的方法和技术,包括换热器材料的选择、流体动力学优化设计、换热器表面处理技术和改进流体流动方式等。通过理论分析,改进换热器设计和流体流动方式可以显著提高传热效率,降低能耗,提升舒适度。本研究旨在为制冷空调系统的设计和优化提供有益的参考。

关键词 制冷空调;换热器;传热效率

中图分类号: TM925.1

文献标志码: A

文章编号: 2097-3365(2024)06-0004-03

近些年,随着气候变化和人们生活水平的提高,制冷空调在各类场所的应用越来越广泛。而制冷空调系统中的换热器是实现热交换的核心部件。因此,提高换热器传热效率对于节能降耗和提升舒适度至关重要。本研究将结合目前市场上常见的制冷空调用换热器类型,探讨如何提高其传热效率的方法和技术。

1 制冷空调用换热器类型

1.1 固定板式换热器

固定板式换热器是制冷空调系统中常见的一种换 热器类型。它由一系列平行排列的金属板组成, 板与 板之间形成了一系列的通道,用于流体的传热和换热。 固定板式换热器具有较高的换热效率。由于固定板式 换热器的结构特点,流体在通道中呈现多次分流与汇 流的状态,这使得流体能够与金属板充分接触,从而 实现更高效的热量传递。固定板式换热器的板间距可 以根据需要进行调整,进一步提高传热效率。相比于 其他换热器类型,固定板式换热器的紧凑结构使得它 在占用空间方面更具优势[1]。这对于制冷空调系统来 说尤为重要, 因为空间通常是有限的。它可以适应不 同的工况条件和介质类型,并且在运行过程中稳定性 较高。这使得固定板式换热器在制冷空调系统中能够 提供稳定的换热性能,并且不容易受到外界因素的影 响(见图1)。然而,固定板式换热器也存在一些挑战 和改进的空间。例如,由于板与板之间的间隙有限, 容易造成积灰和堵塞问题,影响传热效果。此外,固 定板式换热器的清洗和维护相对复杂,需要定期进行 检查和清理。

1.2 涡轮式换热器

涡轮式换热器是制冷空调系统中的另一种常见的

换热器类型。它利用涡轮旋转产生的动能和惯性力使 流体发生旋转,从而达到传热的目的。由于其特殊的 设计结构,流体在旋转过程中不断与涡轮表面接触, 从而实现更充分的传热。

另外,涡轮式换热器还可以在不同介质之间进行 传热,具有广泛的适用范围。其次,涡轮式换热器占 用空间较小,结构紧凑。相比于其他换热器类型,涡 轮式换热器的体积和重量都较小,可以在空间有限的 情况下使用。它不需要移动部件和机械连接,运行时 噪声和振动较小。同时,涡轮式换热器的结构简单, 不容易出现故障,具有较高的可靠性和长寿命^[2]。然 而,涡轮式换热器也存在一些挑战和改进的空间。例如, 在高速旋转过程中容易受到离心力和摩擦力的影响, 需要选择合适的材料和润滑方式来确保其正常运行。

此外,涡轮式换热器的传热效率还有待进一步提高,需要通过优化设计和流体动力学分析来实现。

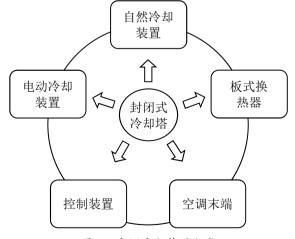


图 1 空调冷却装置分类

1.3 螺旋式换热器

螺旋式换热器是制冷空调系统中另一种常见的换 热器类型。它采用螺旋形状的设计,通过流体在内外两 侧螺旋通道中的旋转流动,实现传热和换热的过程。由 于其特殊的螺旋通道结构,流体在螺旋式换热器中可以 进行多次的回旋和交叉流动, 从而实现更充分的传热。 这种流动方式不仅可以提高传热效率,还能够减小壳管 间温度差,降低传热介质的压降。其次,螺旋式换热器 占用空间相对较小。相比于传统的壳管式换热器,螺旋 式换热器的体积和重量更小, 因此在空间受限的条件下 更加适用。螺旋式换热器具有较好的适应性和灵活性。 它可以适用于不同工况和介质之间的换热, 具有良好的 适应性。螺旋式换热器还可以实现多种流体之间的换热, 具有较高的灵活性。然而,螺旋式换热器也存在优化改 进的空间。例如,由于螺旋通道的结构特点,螺旋式换 热器在清洗和维护方面相对复杂。清洗时需要注意排除 其中的污垢和积聚物,以保证其正常运行和传热效果。

1.4 冷凝器

冷凝器是制冷空调系统中的一个重要组件, 用干 将制冷剂从气态转变为液态。它通常位于制冷循环的 高压侧,接收高温高压的制冷剂气体,通过传热的过 程使其冷却并凝结成液体。在冷凝器内部,制冷剂气 体与冷凝器的管壁接触, 通过传热的方式将热量传递 给外部介质或环境。这样,制冷剂的温度会逐渐下降, 直到达到饱和温度并凝结成液体。通过冷凝过程,制冷 剂的热量被有效地排出,从而实现制冷系统的工作[3]。 其次,冷凝器具有结构简单、稳定可靠的特点。一般 来说,冷凝器采用管道和散热片等组件构成,在结构 上比较简单。这种简单的结构使其具有较高的稳定性 和可靠性, 能够长时间稳定地工作。冷凝器内部的热 传递面积相对较大,通过增加散热片或采用其他增强 换热的方式,可以进一步提高传热效率。这样可以有 效地提高冷凝器的性能,实现更高效的制冷循环。然 而,冷凝器也存在一些应用弊病。例如,在高温环境下, 冷凝器的散热效果可能会受到影响,导致制冷剂冷凝 不完全或无法达到设计要求。此外,冷凝器在工作过 程中也容易受到灰尘、污垢等外界因素的影响,需要 定期清洗和维护以保持其性能稳定。

2 提高换热器传热效率的方法和技术

2.1 换热器材料的选择

在换热器的设计和制造过程中,正确选择合适的 换热器材料对于提高传热效率至关重要。不锈钢具有 优良的耐腐蚀性、耐高温性和机械强度,是一种常用的换热器材料。其中,316L不锈钢是一种低碳含量的不锈钢,具有较好的耐腐蚀性和耐高温性能,广泛应用于化工、食品、医药等行业的换热设备中。不锈钢材料还可以通过表面处理进一步提高其耐腐蚀性能,例如电镀、喷涂等。铜是一种导热性能极佳的金属材料,具有良好的热导率和热传递性能。因此,在一些对传热效率要求较高的应用中,如空调、冷却系统等,常使用铜制换热器。

此外,铜材料也具有较好的耐腐蚀性,能够适应一些腐蚀性介质的工作环境。铝是一种轻量化的金属材料,具有良好的导热性能和良好的耐腐蚀性。相比于铜,铝材料更轻便,可以减小设备的重量和成本。因此,在汽车、航空航天等领域常使用铝制换热器。钛合金具有优异的耐腐蚀性和耐高温性,广泛应用于化工、海洋和航空航天等领域。由于其较高的成本,钛合金通常应用于对腐蚀性要求极高的介质中,如酸碱介质等。纳米材料是近年来发展起来的一种新型材料,具有特殊的物理和化学性质^[4]。通过添加纳米材料,可以改善换热器的传热性能。例如,将纳米颗粒添加到流体中,可以增加流体的热导率,提高传热效率。

2.2 流体动力学优化设计

流体动力学优化设计是一种以流体动力学理论为基础,结合计算机模拟和优化方法进行的热交换器设计方法。其主要目的是通过优化流体的运动状态和热传递特性,提高传热效率和设备性能。在流体动力学优化设计中,需要对流体的流动特性进行深入分析和研究。其中,流体的速度、压力、密度和温度等参数都会对传热效果产生影响。因此,在设计过程中需要结合数学模型和计算机模拟,对流体动力学特性进行精确计算和分析。针对不同的热交换器类型和工作条件,流体动力学优化设计可以采用多种方法进行优化。

- 1. 通过调整流道的形状和尺寸,改善流体的流动状态和热传递特性。例如,在壳管式热交换器中,将流道设计成弯曲形状或扩散缩流形状,可以增加流体的流速和热传递面积,从而提高传热效率。
- 2. 在流道壁面上添加一定的纹理结构,可以增加流体的湍流程度,从而提高传热效率。例如,将流道壁面设计成螺旋状或网格状结构,可以增加流体的湍流程度,提高传热效率。
- 3. 通过调整进出口流体的流量分布,改善流体的流动状态和热传递特性。例如,在板式换热器中,通过合理调整进出口的流体流量分布,可以使流体在板

间均匀分布, 从而提高传热效率。

4. 改善换热器的结构和排布方式,提高热传递面积和流体流动状态,从而提高传热效率。例如,在多级壳管式热交换器中,采用串联或并联排列方式,可以增加热传递面积和流体的流动速度,提高传热效率。

2.3 换热器表面处理技术

换热器表面处理技术是指通过对换热器表面进行 特殊的处理或涂层,以改善其传热性能、抗腐蚀性能 和防污性能的一系列方法。在换热器的运行过程中, 表面处理技术可以有效地提高其热传递效率, 并延长 其使用寿命。金属表面处理是指对换热器金属表面进 行特殊处理,以增强其抗腐蚀性能和热传导性能。例如, 常用的金属表面处理方法包括电镀、搪瓷和镀锌等。 通过这些处理方法,可以在金属表面形成一层保护层, 提高其耐腐蚀性和热传导性。表面涂层技术是将特殊 的涂层材料涂覆在换热器表面,形成一层保护层,以 改善其传热性能和抗腐蚀性能。常见的表面涂层技术 包括陶瓷涂层、金属涂层和聚合物涂层等[5]。这些涂 层材料具有良好的耐磨性、耐腐蚀性和导热性,可以 有效地提高换热器的传热效率。微纳米结构技术是指 在换热器表面形成微米级或纳米级的结构, 以增加其 表面积和改善流体的流动状态。例如,通过纳米材料 的溶胶凝胶法制备纳米结构涂层,可以增加表面积, 提高传热效率。此外,利用微纳米结构技术还可以改 变表面的润湿性,减少污垢和水垢的附着,提高防污 性能。超声波清洗技术是一种通过超声波的作用,将 液体中的微小气泡振动并破裂,产生冲击波,以达到 清洗表面的效果。在换热器的使用过程中,会出现污 垢和水垢的附着,影响传热效果。通过超声波清洗技术, 可以有效地清除表面的污垢和水垢,恢复换热器的传 热性能。

2.4 改进流体流动方式

改进流体流动方式是一种在换热器中优化流体流动的方法,旨在提高传热效率和降低流体阻力。通过改变流体流动的方式,可以改善流体在换热器内部的传热和传质性能,从而实现更高效的换热过程。在传统的换热器中,流体一般以直线流动的方式通过管道或板片间隙,这种流动方式称为层流。然而,在某些情况下,层流的流动方式并不能有效地利用换热器的表面积和改善传热效果。因此,改进流体流动方式成为提高换热器性能的重要途径之一。一种常见的改进流体流动方式是引入湍流,也称为混合流动。湍流是

指流体在管道或板片间隙中出现无规则、复杂的涡流运动。相比于层流,湍流具有更大的涡流强度和更高的流体混合程度,能够提供更好的传热效果。实现湍流流动的方法有多种。常见的方法是通过增加流体的流速来促使层流向湍流转变。当流速超过临界值时,流体会发生剧烈的涡流运动,形成湍流流动。此外,还可以通过改变管道或板片的几何形状来引入湍流,例如在管道内部安装螺旋翅片或增加流道的弯曲程度等。引入湍流流动可以有效地增加换热器的传热系数,提高传热效率。湍流流动的主要优势在于扩大了流体与换热表面的接触面积,加快了热量的传递速度。另外,湍流流动还能够将流体中的温度和浓度分布均匀化,提高传质效果。

3 结束语

文章介绍了制冷空调用的常见换热器类型及提高 传热效率的方法和技术。固定板式、涡轮式、螺旋式 和冷凝器是常见的换热器类型,它们在空间利用、适 应性和稳定性等方面各有优势和挑战。针对提高传热 效率的方法和技术包括换热器材料选择、流体动力学 优化设计、换热器表面处理技术和改进流体流动方式 等。这些方法和技术能够有效提高传热效率,降低能耗。 通过理论分析,本研究为制冷空调系统提升传热效率 提供了可行的方案和思路,为制冷空调系统的设计和 优化提供了有益参考。

参考文献:

- [1] 丁国良.制冷空调用换热器的高效传热技术[J].制冷与空调,2023,23(04):57-66.
- [2] 袁荣胜,晏刚.冰箱换热器技术发展现状[J].家电科技,2021(02):45-50.
- [3] 马国远,高磊,刘帅领,等.制冷空调用换热器研究进展[]]. 制冷与空调,2023,23(04):88-100.
- [4] 刘金平.制冷空调用换热器、风机与水泵、阀件的技术研究及应用进展 [C]// 中国制冷学会. "2022 年双碳背景下中国制冷技术研究及应用进展论坛"会议论文集, 2023.
- [5] 张海涛. 制冷与空调用套管换热器强化换热研究 [J]. 价值工程,2022,41(29):65-67.