山区公路桥梁勘察与设计要点分析

罗承轶

(乐山市通达交通勘察设计有限责任公司,四川 乐山 614000)

摘 要 山区公路桥梁是连接山区与外界的重要交通枢纽, 其勘察与设计工作对于保证道路的安全性、可靠性和提高运输效率具有重要意义。本文首先对山区公路桥梁的勘察要点进行深入分析, 其次分析山区公路桥梁设计要点,接着分析山区公路桥梁勘察与设计中的环境因素影响, 最后提出相应的质量控制措施, 旨在为提高山区公路桥梁建设的质量和效益提供借鉴。

关键词 山区公路桥梁;勘察与设计;环境因素

中图分类号: U412

文献标志码: A

文章编号: 2097-3365(2024)07-0094-03

山区地形复杂多变,地质条件恶劣,气候条件多样,给公路桥梁的勘察与设计带来了极大的挑战。因此,在勘察阶段,需要对山区的地形、地貌、地质构造、岩层分布、水文条件等进行详细调查和分析,为设计提供准确可靠的基础数据。同时,还需要充分考虑到气候条件对桥梁材料选择、结构设计和维护方案的影响,确保桥梁能够抵御极端气候的侵袭。

1 山区公路桥梁勘察要点

1.1 地质勘察

地质条件详细勘察是山区公路桥梁建设的基础工作。这包括对桥位区域的地质构造、地层岩性、不良地质现象、特殊性岩土等进行深入调查和了解。为了获取这些关键的地质信息,会采用多种科学手段,包括钻探、地球物理勘探以及原位测试等。通过钻探,可以直观地获取地下岩层的样本,从而准确判断地层的性质和结构。地球物理勘探则利用各种物理场(如电磁场、重力场等)的特性来探测地下结构,而原位测试则直接在地面进行,用以评估土壤或岩石的力学性质。这些方法的综合运用,能够为桥梁的设计和施工提供全面而详细的地质资料,确保工程设计的科学性和施工的安全性^[1]。

在山区,由于地形地貌的特殊性,地质灾害的发生频率较高,如滑坡、泥石流、崩塌等,这些灾害对于公路桥梁的安全运营构成了严重的威胁。因此,在进行地质条件详细勘察时,地质灾害风险评估成为不可或缺的一环。这一评估工作不仅需要对区域内的地质环境进行细致的研究,还需要结合历史灾害记录和当地的降雨情况等因素,进行全面的分析。通过对潜在地质灾害风险的评估,工程团队能够预测可能发生的灾害类型和规模,并据此提出有效的防治措施,以

降低未来桥梁建设和运营过程中的风险。

1.2 土壤勘察

土壤勘察主要涉及土壤类型与特性分析以及土壤参数获取,包括对桥梁预定位置的土壤进行系统的取样和深入的分析,以便准确确定土壤的种类、化学成分、矿物质成分以及物理力学性质等关键信息。在进行土壤勘察时,会使用各种采样工具和技术,如钻孔、挖掘探坑等方式,从不同深度和位置获取土壤样本。这些样本随后会被送往实验室,通过一系列的实验测试,如颗粒大小分析、密度测定、含水量测试、压缩试验和剪切强度试验等,来评估土壤的工程特性。

通过对土壤样本的全面分析,能够获得关于土壤的详尽数据,包括土壤的分类(如黏土、砂土、砾石等)、密实度、渗透性、压缩性、承载能力以及其他重要的物理和化学性质。这些参数对于桥梁基础的设计和施工具有至关重要的作用,因为它们直接影响到桥梁基础的稳定性、安全性和耐久性。

1.3 水文勘察

山区降雨量大且集中,河流特征复杂多变。在这样的背景下,对于山区公路桥梁的建设来说,水文勘察显得尤为重要。通过对山区降雨、河流流量、水位变化等水文数据的收集和分析,了解河流的冲刷、淤积规律,在进行桥梁设计时必须考虑到洪水的影响,以确保桥梁在极端天气条件下的安全性和稳定性。水文勘察的数据将直接影响到桥梁的洪水设计标准,包括桥梁的高度、桥墩的形状和材料选择等关键参数^[2]。通过对水文数据的分析,可以预测在特定洪水情况下桥梁可能遭受的最大冲击力,从而设计出能够抵御这些力量的桥梁结构。

1.4 地形地貌勘察

地形地貌勘察主要是对桥位区域的地形起伏、地

貌类型、地质界线等进行详细调查和测量。为了深入了解地形地貌对桥梁建设的影响,会采用各种地形测量技术,如使用卫星遥感、地理信息系统、全站仪、水准仪等现代测量工具,以及传统的地面实测方法。地貌分析则进一步解读这些数据,评估地形地貌对桥梁设计的具体影响。例如,地形的坡度会影响桥梁的纵向设计,而地质条件则直接影响桥梁基础的类型和深度。通过对地形地貌的深入理解,能够更好地规划桥梁的线位,即桥梁的起点和终点,以及桥梁的走向。这对于确保桥梁的经济性、安全性和环境适应性至关重要。

2 山区公路桥梁设计要点

2.1 桥梁线位与平纵横设计

在山区公路桥梁设计中,线位的选择受到地形的 严格限制。设计师需要顺应山形地势,确保线位的唯一性。因此,在平、纵、横三个方向上的设计都需要 进行细致的协调 [3]。在桥梁设计中,集弯、坡、斜于一体的桥梁结构较为常见,这要求设计师在设计中必须 充分考虑到桥梁各细部构造与地形、地质之间的关系。

由于山区地形复杂,平曲线比例较大,超高缓和 段的设计需要特别谨慎,此外,纵坡和横断面的设计也 需要与平曲线相协调,以确保桥梁结构的整体稳定性。

2.2 桥梁上部结构设计

桥梁上部结构的设计是山区公路桥梁设计的关键 环节。在山区,由于地形起伏大,桥梁的跨度和高度 往往较大,这对上部结构的稳定性和承载能力提出了 更高的要求。

在选择上部结构形式时,T 梁和整体现浇板梁是常见的选择。T 梁具有较好的受力性能和施工便利性,而整体现浇板梁则能更好地适应复杂的地形变化 ^[4]。在选择时,需要综合考虑桥梁的跨度、荷载、施工条件等因素。

跨中矢高和内外侧边梁梁长的设计也是上部结构 设计中的重要内容,在山区,由于地形变化大,桥梁 的内外侧受力情况可能存在较大差异,因此需要对跨 中矢高和内外侧边梁梁长进行精细的设计,以确保桥 梁结构的整体稳定和安全。

2.3 桥梁下部结构设计

桥梁下部结构的设计同样重要,在山区,由于地 形陡峭,桥墩的高度和形式需要特别考虑。墩高的设 计需要综合考虑桥梁的跨度、荷载以及地形条件等因 素。此外,桥墩的形式也需要根据具体情况进行选择, 如柱子式墩、扩大基础与桩基础等。

在基础设计中, 需要充分考虑山区地质条件的复

杂性。通过详细的勘察和分析,确定合适的基础形式 和尺寸,以确保桥梁基础的稳定性和承载能力。

3 山区公路桥梁勘察与设计中的环境因素考虑

3.1 气候条件影响

气候条件对山区公路桥梁的勘察与设计具有显著 影响。温度、降雨量和风力等气候因素直接关系到桥 梁的材料选择和结构设计。

在高温环境下,桥梁材料可能发生热膨胀,而在低温环境下则可能出现脆性增加、易发生破裂的现象^[5]。因此,在材料选择时,需要考虑其抗热和抗寒性能,以确保桥梁在不同温度条件下的稳定性和安全性。

山区降雨量大且集中,容易导致泥石流、滑坡等自然灾害,对桥梁的安全构成威胁,在设计中需要充分考虑桥梁的抗洪能力,确保在暴雨等极端天气条件下桥梁能够保持稳定。

山区地形复杂,风力较大,可能对桥梁结构产生 不利影响,在设计中需要合理计算风荷载,确保桥梁 具有足够的抗风能力。

3.2 交通需求考虑

山区公路桥梁的设计还需要充分考虑交通需求, 山区交通环境复杂,交通流量、车辆类型以及交通拥 堵情况等因素都可能对桥梁设计产生影响。

交通流量的大小直接决定了桥梁的承载能力和通行能力,在交通流量大的地区,需要设计更大跨径和 更高承载能力的桥梁,以满足车辆通行的需求。

车辆类型也是影响桥梁设计的重要因素,不同类型的车辆对桥梁的荷载和通行要求不同,因此在设计中需要充分考虑各种车辆类型的特点,确保桥梁能够满足不同车辆的通行需求。

交通拥堵情况也需要纳入考虑范围,在交通拥堵 严重的地区,需要设计合理的桥梁线位和平纵横布局, 以缓解交通压力,提高通行效率。

4 山区公路桥梁勘察与设计的质量控制措施

4.1 质量管理体系构建

质量方针应明确山区公路桥梁勘察与设计的总体 质量目标和要求,为全体员工提供明确的质量方向。 组织结构应建立清晰的责任体系,确保每个部门和人 员都明确自己的职责和权限。制定详细的质量手册和 程序文件,应包含质量管理的原则、制度、流程等内容, 为全体员工提供操作指南。程序文件则针对具体的勘 察与设计活动,规定详细的操作步骤和质量控制要求。

4.2 施工过程质量监控

在施工过程中,对原材料的质量控制是首要任务。

必须确保使用的原材料符合设计要求和相关标准,严 禁使用不合格材料。同时, 对原材料的储存、运输和 使用过程进行监控, 防止因材料问题导致质量缺陷。

加强施工过程监督与检测, 对关键工序和关键部 位进行重点监控,确保施工操作符合规范要求。利用 先进的检测设备和手段,对施工质量进行实时监测和 数据分析, 及时发现和处理质量问题。

制定严格的成品保护和验收标准,对已完成的勘 察与设计成果进行妥善保护, 防止损坏和污染。同时, 按照规定的验收标准进行质量检查,确保成果符合设 计要求和质量标准。

4.3 质量问题分析与处理

在山区公路桥梁勘察与设计过程中, 难免会出现 一些质量问题。针对这些问题,需要进行深入的分析 和处理。首先,对质量问题进行归类和记录,分析问 题的原因和影响因素。然后,制定相应的处理措施和 预防措施, 防止问题再次发生。同时, 对质量问题进 行持续改进,不断提高勘察与设计质量水平。

5 案例分析

5.1 工程概述

本案例涉及的公路桥梁工程位于我国某山区高速 公路的关键路段, 桥梁需要跨越一条深谷。该地区地 形复杂, 沟壑纵横, 且存在活跃的断裂带, 地质条件 极为复杂。此外, 该地区降雨充沛, 气候多变, 对桥 梁设计提出了更高要求。

5.2 勘察与设计要点分析

5.2.1 地质勘察与风险评估

在地质勘察阶段,工程团队对该地区进行了详细 的钻探和物探工作,掌握了断裂带的分布和活动情况, 以及岩层、土壤的物理力学性质。通过风险评估,确 定了潜在的滑坡、泥石流等地质灾害风险,并制定了 相应的防范措施。

5.2.2 桥梁线位与平纵横设计

由于地形限制,桥梁线位的选择经过了多次优化。 设计团队充分考虑到山体的稳定性和谷底的宽度,确 定了合理的桥墩位置和跨度。在平纵横设计上,团队 结合地形变化, 合理设置了平曲线和纵坡, 确保了桥 梁的行车安全和舒适性。

5.2.3 桥梁上部与下部结构设计

考虑到地质条件和气候因素,上部结构采用了预 应力混凝土连续刚构桥,具有较高的承载能力和抗风 抗震性能。下部结构则采用了扩大基础与桩基础相结 合的方式,确保了桥墩的稳定性和安全性。

5.3 成功经验与不足之处

5.3.1 成功经验

(1) 充分的地质勘察和风险评估为桥梁设计提供 了可靠的数据支持,确保了设计的科学性和合理性。(2) 在桥梁线位选择上,设计团队充分考虑到地形、地质 等因素, 优化了桥墩位置和跨度, 提高了桥梁的整体 稳定性。(3)上部结构和下部结构的设计充分考虑了 地质条件和气候因素,确保了桥梁的安全性和耐久性。

5.3.2 不足之处

(1) 在勘察阶段,对部分特殊地质现象(如岩溶 发育)的探查不够深入,导致施工中出现了一定的地 质问题,影响了工程进度。(2)在设计过程中,对极 端气候条件下的桥梁性能考虑不足, 如在特大暴雨情 况下,桥梁的排水系统和防洪能力有待加强。

5.4 总结

通过本案例的分析, 我们可以看到, 在山区公路 桥梁的勘察与设计中,必须充分考虑到地形、地质、 气候等多种因素,确保设计的科学性和合理性。也需 要在实践中不断总结经验教训,提高勘察与设计水平, 为山区公路桥梁的建设提供更加坚实的技术支撑。

6 结束语

山区公路桥梁的勘察与设计是一项复杂而艰巨的 任务,需要综合考虑多种因素,确保桥梁的安全性、 可靠性和经济性。本文通过深入分析和研究勘察与设 计要点,可以为山区公路桥梁的建设提供更加科学、 合理的方案,为山区交通事业的发展做出积极贡献。 随着科技的不断进步和工程实践经验的积累, 相信山 区公路桥梁的勘察与设计水平将会不断提高,为山区 经济的繁荣和社会的发展提供更加坚实的交通保障。 在勘察与设计实践中,还需要根据实际情况灵活调整 和优化设计方案,确保山区公路桥梁的建设能够真正 满足当地人民的需求。

参考文献:

- [1] 董铮.山区公路桥梁设计原则及设计要点探究分析 [[]. 科研,2017(02):201.
- [2] 严锋.山区高速公路工程地质选线研究[D].西安:长 安大学,2015.
- [3] 刘东波.山区公路桥梁勘察测量的相关问题与技术 要点 [[]. 中国科技期刊数据库工业 A,2021(12):403-405.
- [4] 王天津,论山区路桥设计的要点 [[]. 建筑与文化:学 术版,2013(08):86-86,87.
- [5] 胡志峰,山区路桥设计中要点的思考 [[].城市地理,2018 (1X):113.