山区公路桥梁施工困难问题及解决对策

陈雁雁

(安徽昌达路桥工程集团有限公司,安徽 合肥 230000)

摘 要 为解决山区公路桥梁施工存在的困难问题,本文以山区公路桥梁施工实际情况为例,对其面临的问题进行了分析,指出存在地形复杂、自然灾害频繁、交通条件差、工程技术要求高、环保要求严格等问题,并提出了优化施工方案、加强安全管理、提高运输能力、引进先进技术、严格环保措施等应对方法,以期能够为有效克服山区公路桥梁施工困难、保障施工顺利进行提供参考,进而提高施工效率与安全性,保护生态环境。

关键词 山区公路桥梁施工;山区地形;自然灾害;交通条件;环保要求

中图分类号: U415.6; U445.4

文献标志码: A

DOI: 10.3969/j.issn.2097-3365.2025.16.031

0 引言

随着我国交通基础设施建设的持续推进,山区公路桥梁建设成为交通发展的关键环节。山区独特的地理环境,为公路桥梁施工带来诸多挑战。复杂地形导致施工场地布置艰难,施工难度大幅提升;频发的自然灾害,如泥石流、山体滑坡等,严重威胁施工安全;落后的交通条件阻碍物资及时供应,延长施工周期;高标准的工程技术要求和严苛的环保规定,进一步增加了施工难度。在此背景下,深入探究山区公路桥梁施工困难问题及解决对策,对推动山区交通建设、促进区域经济发展具有重要现实意义。

1 山区公路桥梁施工面临的困难问题

1.1 地形复杂,施工难度大

山区地形复杂多变,山峦起伏、沟壑纵横。在进行公路桥梁施工时,首先面临的就是场地狭窄且崎岖不平的难题。桥梁基础施工往往需要较大的作业空间来安置机械设备、堆放材料等,然而山区受限的地形使得场地平整工作艰巨且耗时。例如在山谷间搭建桥梁,可能一侧是陡峭的山坡,另一侧是深谷,施工设备难以顺利进场和展开作业。同时,复杂地形还会导致桥梁跨度设计受限,为满足跨越要求,可能需要设计特殊的桥梁结构形式,像大跨度斜拉桥或悬索桥。但这些特殊结构的施工工艺复杂,对施工精度要求极高,增加了施工难度与技术挑战,任何一点偏差都可能影响桥梁整体质量与稳定性。

1.2 自然灾害频繁,安全隐患大

山区地质条件不稳定,自然灾害频发。暴雨极易

引发泥石流和山体滑坡,泥石流裹挟着大量泥沙、石块,以强大的冲击力冲向施工区域,瞬间就能摧毁临时搭建的施工设施、掩埋施工材料和设备,严重威胁施工人员的生命安全^[1]。山体滑坡则会破坏已完成的桥梁基础部分,使桥梁施工进度严重受阻,前期投入的大量人力、物力付之东流。地震也是山区可能面临的灾害,虽发生概率相对较低,但一旦发生,对桥梁施工的影响将是毁灭性的,会导致桥梁结构变形、坍塌,造成巨大的经济损失和人员伤亡。

此外,山区的强风天气也较为常见,在桥梁高空 作业时,强风会增加施工人员的操作难度,增大安全 风险,稍有不慎就可能发生人员坠落等事故,给施工 安全带来极大隐患。

1.3 交通条件差,物资供应困难

山区交通网络不完善,道路狭窄且崎岖,部分路 段甚至是蜿蜒曲折的盘山小道,这使得大型运输车辆 难以通行。施工所需的大量建筑材料,如钢材、水泥、 砂石等,无法及时、高效地运达施工现场。例如:从 材料供应地到山区施工点可能需要经过漫长且路况不 佳的山路,运输过程中车辆容易发生故障,而且为保 障安全,车辆行驶速度缓慢,导致物资运输周期大幅 延长。同时,交通不便还使得施工设备的运输和维护 困难重重。一旦施工设备出现故障,维修人员和维修 配件难以迅速抵达现场,设备长时间停机不仅影响施 工进度,还增加了施工成本。此外,交通条件差也限 制了施工人员的通勤,降低了施工人员的工作积极性 和工作效率,进一步影响了物资供应的及时性和施工 的顺利进行。

1.4 工程技术要求高,施工周期长

山区公路桥梁所处的特殊地理环境,对工程技术提出了极高要求。由于地形复杂,桥梁结构设计需要充分考虑地形地貌、地质条件等多种因素,确保桥梁的稳定性和耐久性。在施工过程中,对于桥梁基础的施工技术要求尤为严格,如在软弱地基上需要采用特殊的地基处理技术,以提高地基承载能力。同时,山区桥梁的高空作业、大跨度施工等都需要先进的施工技术和设备。这些复杂的技术要求使得施工过程中需要不断进行技术攻关和创新,增加了施工难度和不确定性^[2]。而且每一个施工环节都需要严格把控质量,不能有丝毫疏忽,这必然导致施工周期延长。从桥梁的规划设计到最终建成通车,往往需要数年时间,还可能受到各种因素的干扰,进一步拉长施工周期。

1.5 环保要求严格,环境影响大

在当今注重生态环境保护的大背景下,山区公路 桥梁施工面临着严格的环保要求。山区生态系统相对 脆弱,施工过程中的开挖、填方等作业会破坏地表植被, 引发水土流失。大量施工扬尘、噪声以及施工废水的 排放,会对周边空气质量、声环境和水环境造成不良 影响。例如,施工扬尘可能导致周边植物叶片气孔堵塞, 影响植物的光合作用;施工噪声会干扰野生动物的栖息和繁殖;未经处理的施工废水直接排放,可能污染 山区的溪流和地下水,影响周边居民的生活用水安全。 为满足环保要求,施工单位需要采取一系列环保措施, 如设置围挡减少扬尘扩散、采用低噪声设备和合理安 排施工时间降低噪声影响、建设污水处理设施对施工 废水进行处理达标后排放等。这些环保措施不仅增加 了施工成本,还在一定程度上影响了施工进度。

2 山区公路桥梁施工面临困难问题的解决对策

2.1 优化施工方案, 合理规划

在开展山区公路桥梁施工前,借助先进的地理信息技术,对施工区域地形地貌进行全面精准测绘,生成详细的三维地形模型。基于此模型,设计团队与施工专家紧密合作,深入研讨并优化施工方案。例如:依据地形起伏与地质状况,巧妙规划桥梁线路,尽量避开地质破碎带与陡峭山坡,选择地质稳定、地势相对平坦的区域设置桥位,从而简化基础施工流程,降低施工难度。在场地规划方面,充分利用山谷、缓坡等自然地形,合理布局材料堆放区、机械设备停放区与施工人员生活区,通过修筑临时便道,实现各区域

之间的便捷连通,保障施工材料与设备能够顺畅运输至作业点^[3]。同时,精心编排施工工序,运用项目管理软件对关键线路进行分析,明确各施工环节的先后顺序与时间节点,提前预见并解决工序间可能出现的冲突,确保施工过程有条不紊地推进,有效提高施工效率,减少不必要的资源浪费。在实际施工中,如某山区桥梁建设,通过前期细致规划,将原本需在陡峭山坡作业的桥墩位置调整至相对平缓地带,施工周期缩短了近 20%,施工成本降低约 15%。此外,在施工方案优化时,还应充分考虑季节因素对施工的影响,合理安排在适宜季节进行关键工序施工,如在旱季开展基础施工,避免雨水对施工质量的干扰。

2.2 加强安全管理,制定应急预案

构建完善的安全管理体系, 明确各级管理人员与 施工人员的安全职责,将安全责任层层落实到个人。 定期组织施工人员参加安全培训课程,邀请专业人员 讲解山区施工安全知识与应急处理技能, 通过播放事 故案例视频、开展现场模拟演练等方式, 增强施工人 员的安全意识与自我保护能力。在施工现场,设置充 足且醒目的安全警示标识, 对危险区域进行严密隔离 防护, 如在悬崖边缘、深基坑周边设置坚固的防护栏 与警示灯。针对山区常见的自然灾害,制定详尽且具 可操作性的应急预案。建立专业的地质灾害监测小组, 运用先进的监测设备,如位移传感器、雨量计等,对 施工区域周边的山体稳定性、降雨量等数据进行实时 监测。一旦监测数据出现异常,立即启动相应应急预案, 迅速组织施工人员按照预定疏散路线有序撤离至安全 地带,同时安排专业抢险队伍对施工设施进行紧急加 固或转移, 最大程度降低灾害损失, 保障施工人员的 生命安全与施工设施的完好。例如:某山区桥梁施工 项目,通过持续的安全培训与应急演练,在遭遇一次 小型泥石流灾害时, 施工人员能够迅速响应, 按照预 案有序撤离,未造成人员伤亡,且施工设备大部分得 以妥善转移,将损失降到最低。另外,为提升安全管 理效果, 可引入智能化安全监测系统, 对施工现场进 行24小时全方位监控,及时发现并预警潜在安全风险。

2.3 提高运输能力,保障物资供应

加大对山区交通基础设施的改造力度,联合当地 交通部门,对通往施工区域的既有道路进行拓宽、加 固与修缮,改善道路通行条件,确保大型运输车辆能 够安全、顺畅地行驶。与经验丰富、信誉良好的专业

运输公司建立长期合作关系,根据山区道路特点,配 备性能卓越、适应崎岖路况的运输车辆, 并对司机进 行专项培训, 使其熟悉山区驾驶技巧与应急处置方法。 在施工场地附近选址建设大型物资储备库, 运用信息 化库存管理系统,根据施工进度计划与材料消耗规律, 合理储备常用施工材料,如钢材、水泥、砂石等,确 保在物资运输受阻时,施工能够持续进行。同时,搭 建物资运输信息化平台,实时跟踪材料运输车辆的位 置、行驶状态与预计到达时间,以便施工方根据实际 情况及时调整施工计划,保障物资供应的及时性与稳 定性,避免因材料短缺导致施工停滞[4]。在某山区公 路桥梁建设中, 通过与运输公司合作定制特殊悬挂和 轮胎的运输车辆,结合信息化管理平台,物资运输准 时率从60%提升至90%以上。此外,为进一步保障物 资供应,可探索多元化运输方式,如在地形极为复杂 路段采用索道运输小型材料,提高运输效率。

2.4 引进先进技术,提高施工效率

积极关注国内外桥梁施工领域的前沿技术动态, 结合山区公路桥梁施工的特殊需求, 有针对性地引进 先进的施工技术与设备。例如: 在桥梁基础施工中, 采用旋挖钻机进行钻孔作业,相比传统的冲击钻工艺, 旋挖钻机具有成孔速度快、孔壁稳定性好、施工精度 高的优势, 能够显著缩短基础施工周期。在大跨度桥 梁施工中,引入节段预制拼装技术,将桥梁节段在工 厂进行标准化预制,再运输至施工现场进行快速拼装, 不仅能够提高施工质量,还能减少现场高空作业量, 降低施工安全风险。利用无人机技术进行施工现场的 地形测绘、进度监测与安全巡查, 无人机能够快速获 取施工现场的高清影像数据,为施工管理提供准确、 及时的信息支持, 便于管理人员及时发现问题并调整 施工方案。此外,大力推广应用建筑信息模型(BIM) 技术,对桥梁施工全过程进行数字化模拟,提前发现 设计与施工中的潜在问题, 优化施工流程, 提高施工 效率与质量。如某山区特大桥建设,运用 BIM 技术提 前发现设计图纸中20余处潜在问题,避免了施工中的 返工,施工效率提高约30%。并且,在引进先进技术时, 要注重对施工人员的技术培训,确保其能够熟练操作 新设备、运用新技术。

2.5 严格环保措施,保护生态环境

施工单位应高度重视环保工作,严格遵循国家与地方的环保法律法规,制定全面、细致的环保措施。

在施工前,委托专业的环境评估机构对施工区域的生 态环境讲行详细评估,明确生态保护重点与敏感区域。 在施工过程中,采用先进的施工工艺与设备,尽量减 少对地表植被的破坏。对于不可避免的开挖作业,及 时采取植被移栽、表土剥离保存等措施, 为后续生态 修复工作奠定基础[5]。设置完善的施工扬尘防治系统, 在施工现场配备自动喷淋降尘设备, 定期对施工场地 与运输道路进行洒水降尘, 对易产生扬尘的材料进行 密闭储存或覆盖处理。选用低噪声施工设备,并合理 安排施工时间,避免在居民休息时间进行高噪声作业, 减少噪声对周边环境与居民生活的影响。建设专业化 的施工废水处理设施, 对施工过程中产生的泥浆水、 混凝土养护废水等进行分类收集、沉淀、过滤、净化 处理,确保废水达标后排放,防止对山区水体造成污染, 切实保护山区生态环境的完整性与稳定性。例如:某 山区桥梁施工项目通过实施环保措施,施工扬尘浓度 降低了约70%,施工噪声达标率提升至95%以上。而且, 施工结束后, 要持续跟踪生态修复效果, 根据实际情 况及时调整修复方案,确保生态环境得到有效恢复。

3 结束语

山区公路桥梁施工受复杂地形、频发灾害、交通不便、技术难题及环保要求等多重制约,困难重重。 为应对这些问题,施工方需优化施工方案、加强安全 管理、提升运输能力、引进先进技术并严格环保措施。 这些对策可有效改善施工现状,保障施工顺利进行。 未来,随着科技进步与管理水平提升,有望进一步攻 克难题,实现山区公路桥梁建设更高效、安全、环保, 促进山区交通事业蓬勃发展,推动区域经济持续增长。

参考文献:

[1] 王冠,刘刚,郭保林.山区高速公路钢筋混凝土高 墩施工技术[]]. 粘接,2024,51(08):165-168.

[2] 盖明,李积程.山区高速公路桥梁施工特点与技术要点分析[]]. 工程技术研究,2024,09(11):54-56.

[3] 段剑辉.山区高速公路桥梁施工技术要点研究[J].运输经理世界,2024(16):74-76.

[4] 李远. 山区高速公路桥梁施工难点和施工管理策略研究 [[]. 交通世界,2022(35):176-178.

[5] 王林.山区高速公路桥梁桩基施工技术研究 [J]. 工程技术研究,2022,07(02):80-83.