新能源风力发电站项目建设管理创新方式探索

姜文鹏

(中能建国际建设集团有限公司,北京 100025)

摘 要 新能源是一种清洁、低碳、高效的可再生能源,建设新能源风力发电站项目,不仅能节约能耗、降低成本,还能提高发电效果,满足现阶段及未来生产生活用电需求。为提高发电站项目建设水平,发挥其最大效能,还需要全面分析目前项目建设管理存在的痛点及挑战。本文就新能源风力发电站项目建设管理进行分析,并结合实际情况和建设需求,提出了有效的管理策略,旨在为提升项目建设质量水平提供借鉴,进而实现节能减排目标。 关键词 新能源;风力发电站;项目建设管理

中图分类号: TM615

文献标志码: A

DOI:10.3969/j.issn.2097-3365.2025.20.026

0 引言

传统煤炭发电模式会造成大量能源消耗,不仅增加运行成本,还会引发大气及环境污染,直接违背社会可持续发展要求,也难以推动电力行业长远稳定发展。在此情况下,风力发电站项目建设过程中应充分发挥新能源的作用,根据现存的建设管理痛点及挑战,结合项目建设需求及节能减排目标,优化制定管理策略,进一步提高新能源风力发电项目建设运行水平。

1 当前风力发电项目建设管理模式的痛点与挑战 1.1 技术层面

对于技术层面,主要体现在以下几点: (1)风资源评估误差。项目建设前需要根据相关数据信息进行选址,但目前前期数据采集效果偏低,技术应用不佳,存在评估误差,这种情况下选址不合理,进而会导致后续发电效率低下。(2)并网技术瓶颈。目前电网消纳能力不足,储能配套需求增加项目复杂度与项目成本。(3)技术迭代压力。科技发展快速,风机技术更新速度较快,导致所需的设备类型性能与未来兼容性难以平衡^[2]。(4)运维成本高。风电项目后期维护难度较高,且智能化运维体系还未全面普及落实。

1.2 管理层面

对于管理层面,主要体现在以下几点: (1)协同低效。风电项目建设管理涉及多个主体,但目前设计、施工、供应商等多方协同低效,存在信息误差,不仅管理效率低下,还会引发频繁的项目变更。(2)审批复杂。多部门审批导致项目建设周期长,跨地区协调管理困难,增加风电项目建设的不确定性。(3)管理人员能力问题。缺少复合型专业管理人员及相关技术专家,

使得风电项目建设管理实效性不足。同时,目前管理 数字化程度偏低,难以实现数据信息的高效传输、共 享,导致决策延迟或错误,降低项目建设管理效果^[3]。

1.3 经济层面

对于经济层面,主要体现在以下几点: (1) 政策 波动性。补贴退坡、电价调整等政策变化会影响项目 经济性预测,增加投资风险 ^[4]。 (2) 成本控制难点。 原材料价格波动较大,会进一步提高建设成本,导致 项目预算超支,无法达成经济性目标。 (3) 融资压力。 项目初期投资较大,回报周期较长,使得融资难度较高。同时,电价竞争加剧、国际竞争挤压等方面的影响,导致项目融资存在较强的挑战性。

1.4 环境与政策

对于环境与政策层面,主要体现在以下几点: (1) 生态环境保护压力。鸟类迁徙路径、生态敏感区等都会限制选址,且为更好地保护生态环境,采取的环保措施也会增加一定成本 [5]。 (2) 社区冲突。风电项目建设过程中产生的噪声、征地补偿等问题会引发与当地居民的矛盾,出现冲突问题,也是目前项目建设管理的常见痛点,导致项目延迟落地。 (3) 政策支持不足。部分地区对风电环保效益不了解,公众认知偏差,难以认同项目的建设开展,也影响相关政策的落实,政策支持不足的情况下使得项目建设管理水平偏低。

2 技术创新:智能化与模块化驱动效率提升

2.1 智能监控与运维系统

为提高项目建设管理实效性,应加强技术创新, 有效运用智能监控与运维系统。系统采取 B/S 架构, 支持多种客户端,不同用户都可通过不同设备登录系 统,进行相关功能模块的点击操作。系统通过云平台存储处理大量数据信息,依托大数据分析技术,建立相应的模型,能够对风电综合能源的使用情况进行监控分析,进而评估风电项目运行状况和性能表现。同时,设置开放接口,第三方可通过平台提供应用和服务,且支持定制化开发,可与其他系统有效集成,满足多样化管理需求^[6]。

对于智能监控与运维系统来说,其核心技术包括物联网通信管理、移动互联网、云计算、大数据分析、 人工智能等。比如针对物联网通信管理来说,可高效 交换风电设备之间的数据,且将数据实时传至监控中 心,便于工作人员查看了解。针对人工智能来说,可 根据大量的数据信息自动预测可能发生的事故,进而 在监测到异常数据时能够进行自动预警和报警,第一 时间通知工作人员,以提高运维效果,避免故障扩大化。

系统具备多个功能: (1) 实时监测功能。可配合 传感器,对风力发电机的各项运行参数进行监测,包 括温度、风速、风向等。同时,还可在风电机舱等重 要区域安装摄像装置,实现视频实时监控,便于工作 人员第一时间发现故障等相关隐患风险。(2)智能预 警与告警功能。利用 AI 技术、大数据分析技术等,可 自动识别潜在风险,并通知运维人员及时检查维护。 当设备出现故障、运行参数异常时, 系统也能立即发 出告警信息,并进行告警分级,不同级别采用不同声 音提示,以及同步进行录像存储,便于后续分析总结[7]。 (3) 数据分析功能。系统可根据时间节点自动生成相 应的报告,报告内含有运行数据、告警次数、故障位 置等相关信息。(4)决策支持功能。利用 AI 算法、 大数据分析等技术,可对风电场进行战略决策分析, 并利用离散率等分析工具,进一步为优化运营风电项 目提供有力依据。(5)运维管理功能。规范优化运维 管理流程, 高效实现故障与运维信息的传输、交流、 跟踪,不仅可提高运维效率,还能降低运维成本。同时, 还可对运维任务进行工单化管理, 记录运维人员的任 务分配、执行情况及结果等情况,便于监督和后期考 核管理。

2.2 模块化施工技术

模块化施工技术的有效应用能够提升项目建设效率、降低成本、提高质量,且该技术具有良好的环境适应性,能够减少对生态环境的破坏,降低海上作业风险。针对新能源风电项目建设采取模块化施工技术,主要需对以下关键环节加强管理控制: (1)模块化设计。采取分体式机组设计,将风电机组分解为多个独立模

块,统一接口标准,保证后续运输稳定,能够快速组 装。采用混凝土或钢结构预支基础模块, 如重力式基 础、桩基等,这样可减少施工现场浇筑时间。将升压站、 变压器、控制系统等设计为集装箱式模块,实现"即 插即用"[8]。(2)工厂化预制。在工厂内提前完成各 个模块的制作、预装等环节操作, 能够更好地把控施 工质量。同时, 工厂生产过程中采取自动化生产线、 数字化检测技术等手段,可保证模块一致,提高其精 度和可靠性。(3)运输优化。通过公路、海运等方式 进行分批次运输,不仅节约成本,还能减少超限运输 需求,保证运输质量,该方式更适用于偏远地区或海 上风电项目。(4)现场快速组装。预制模块到达项目 施工现场后,可通过大型吊装设备进行模块化拼装, 有效减少吊装窗口期。同时, 在现场组装过程中还可 利用增强现实技术、BIM 技术等进行现场指导,提高组 装精确度,保证施工建设质量。

2.3 数字化设计平台

随着新能源行业的快速发展, 以及全球对节能环 保的重视度,全球风电装机总量及装机容量快速增加。 但由于风电项目规模大、周期长、投入资金多, 且管 理复杂困难, 所以为更好地满足电力行业发展需求, 解决能源供应问题,还需加强重视前期设计环节,能 够运用数字化设计平台提高设计方案的可行性、有效 性、科学性。比如新能源风电项目设计环节,运用GIS 技术、BIM 技术等先进手段,对风电场景的虚拟地理环 境进行建模,以360度全景全方位的方式展示[9]。设 计人员可通过数字化设计平台进行选址设计、风机及 箱变基础设计、场内集电线路设计等多个设计作业, 可实现从初步设计到施工图阶段的全设计流程的数字 化。如针对风电场集电线路路径设计来说,设计人员 利用平台技术,可搭建三维虚拟模型,与现有设备结合, 进一步完成输电线路的规划,以及自动排塔、线路周 边地形的仿真实验,这样可避免不合适立塔及跨越的 区域,提高选线规划设计效果,不仅能降低设计成本, 还能保护生态环境,提高后期项目建设运行效果。

3 管理创新:全流程协同与风险控制

3.1 供应链协同管理

提高项目建设管理效果,应采取供应链协同管理 模式,利用信息化技术对风电产业链上各个环节的运 作进行优化和协调,整合资源。对于供应链协同管理 来说,主要涉及原材料采购、设备制造、运输安装、 运维维护等关键环节。

在供应链协同管理过程中,借助先进技术,建设 运行对应的管理系统,可通过不同功能模块进行相应 的管理监督,以实现各个环节协同配合。(1)供应商 管理。该模块中可对供应商的基础信息、产品信息等 相关数据信息进行跟踪、管理, 可帮助项目管理人员 及时了解情况,选择更合适的供应商。(2)订单管理。 可对整个生命周期进行跟踪管理,包括订单的生成、 确认、分配、执行和结算等环节, 保证订单准确及时 交付,保障项目进度。(3)生产计划。根据市场需求、 资源配置等多方面情况进行综合分析,以更好地制定 生产计划,保证风电设备生产质量,推动风电项目的 高效建设施工。(4)物流管理。可对设备的运输、配 送等各个环节进行实时跟踪管理,保证设备可按时安 全到达项目施工现场。(5)数据分析。采集、整理和 分析供应链相关的数据,为决策提供支持和业务优化 的依据,帮助企业做出准确及时的决策,提升供应链 管理水平。

3.2 EPC 总承包模式优化

优化 EPC 总承包模式,以降低项目成本,提升项目建设水平。首先,优化设计环节,能够借助 BIM 技术等优化设计方案,在设计过程中加强与采购、施工等部门的沟通力度,提高协作配合效果,减少项目变更问题的发生。其次,优化采购环节,可采取公开招标、邀请招标等多种招标方式,引入竞争机制,以降低采购成本。同时,建立完善的供应商评估和选择体系,提高供应商管理质量,减少风险问题的发生。最后,优化施工环节,合理选择施工团队,对施工过程进行全方位监督管理,以及做好施工安全管理,保证施工质量。

另外,还需优化项目风险管理。针对招投标风险来说,风电项目的设计、采购等事项的总承包属于法定必须招标的项目范畴,需严格遵循规定要求,提高招投标工作开展的公平性、公正性、公开性。针对合同风险来说,在签订EPC总承包合同和分包合同时,需确定双方的义务、权利,以及风险分担条款。在合同签订后,后续也要做好跟踪管控工作,了解合同的履行情况,并解决合同履行期间存在的问题,避免经济损失。

3.3 全生命周期管理系统

实现全生命周期项目管理,可完善风电项目管理 流程,系统的运行主要涉及项目规划、设计、建设、 运营及退役多个环节,通过数字化、智能化管理能够 提高效率、降低成本、优化资源、控制风险,以推动 风电项目可持续发展。以下就系统核心模块和关键功能作出分析,比如针对前期规划与开发阶段来说,可根据气象数据、GIS 技术等,建立模型,确定最佳风电场选址。利用数字化规划平台,集成多源数据,生成三维可视化选址方案。针对采购与建设阶段来说,优化运用供应链管理模式,提高管理实效性。采用无人机巡检、AI 图像识别技术等先进手段对施工过程进行监督管理,有效识别隐患,规避风险。针对运营与维护阶段来说,可采取智能运维平台、资产健康管理方式等,进一步保证设备运行的安全性,延长设备使用寿命,提高风电项目整体运行水平。针对退役与回收阶段来说,可采取循环经济管理模式,对废旧叶片等材料进行回收再利用,或者通过全生命周期数据存档,为后续相关项目的建设提供参考。

4 结束语

新能源风力发电站项目的高质量建设管理,能够提升风力发电站运行效率,节约能耗,降低环境污染,更好地达成节能、减排、环保目的。项目管理人员应加强重视,明确存在的管理问题,以更新观念,通过运用智能监控与运维系统、采用模块化施工技术、实施供应链协同管理、运行全生命周期管理系统等方式提高项目建设管理质量,解决能源供应问题,保护生态环境,为电力行业及社会可持续发展提供助力。

参考文献:

- [1] 刘永珍, 冯楠, 尚智文. 新能源风力发电站项目建设管理[J]. 工程施工与管理, 2023, 01(06): 7-9.
- [2] 孙磊.新能源光伏发电站项目建设管理优化策略研究[[]. 电脑采购,2020(05):205-207.
- [3] 刘剑波,苗驰壮,吴振,等.新能源风电工程建设施工的管理要点分析[]]. 大观周刊,2020(21):361.
- [4] 刘鹏,孙崇峰.新能源光伏发电站建设安装中存在的问题及技术难点[]]. 电脑校园,2020(11):8288-8289.
- [5] 袁敏.基于新能源开发的风电工程项目管理的难点及改进途径探讨[J].建筑工程技术与设计,2021(32):1493-
- [6] 周正永. 风力发电项目建设期的风险管理和风险对策研究 []]. 水电科技,2023,06(05):96-98.
- [7] 吴艳明. 风力发电工程建设项目现场管理探讨[J]. 科学与财富, 2021(27):391-392.
- [8] 李晓蓓. 电力建设工程项目管理过程中的风险控制分析 []]. 汽车博览,2022(36):176-178.
- [9] 杨少华. 探讨风力发电厂的施工建设管理策略 [J]. 流体测量与控制,2024,05(06):67-70.