水利渠道工程施工常见问题及解决措施

张文章, 张玉乐

(阳谷县水利局, 山东 聊城 252300)

摘 要 水利渠道工程作为水资源调配和农业灌溉的重要基础设施,在促进区域经济发展中扮演着关键角色。然而,在施工过程中常常遇到设计不合理、材料选择不当、施工难度大等多种问题,不仅影响工程质量,还可能导致项目延期或成本超支。本文探讨了水利渠道工程施工中的常见问题及其解决措施,旨在通过优化设计管理、强化前期准备、提升技术水平、严格材料管理和加强施工质量控制等手段,提高整体施工效率与质量。

关键词 水利渠道工程;设计管理;材料选择;施工质量管理;安全教育

中图分类号: TV672

文献标志码: A

DOI:10.3969/j.issn.2097-3365.2025.20.032

0 引言

水利渠道工程对于保障农业生产、调节水资源分配具有不可替代的作用。随着社会经济的发展,对水利工程的需求日益增加,这使得工程建设面临更多挑战。在实际施工过程中,从设计到实施的各个环节都可能出现问题,如设计不合理导致的功能性缺陷,施工难度大引起的进度延误,材料选择不当造成的安全隐患,以及施工质量不佳引发的使用年限缩短等。因此,深入研究这些常见问题,并提出有效的解决策略,对于推动水利渠道工程高质量发展至关重要。

1 水利渠道工程施工中的常见问题

1.1 设计不合理

水利渠道工程设计不合理会直接影响工程的安全 性、稳定性和长期使用效果。渠道纵坡设计未结合实 地地形条件, 可能导致水流速度过快引发冲刷, 或过 缓造成泥沙淤积,降低输水效率。断面尺寸计算不准 确,使得过水能力不足,在汛期容易发生漫顶甚至溃 堤事故。地质勘察不全面或数据失真,导致基础处理 方案与实际情况不符,如软弱地基未充分加固,后期 可能产生不均匀沉降, 使渠道结构开裂变形。水力计 算模型选择不当,可能造成水流流态不稳定,形成漩 涡或回流,影响灌溉均匀性。防渗设计存在缺陷,如 防渗层厚度不足或材料选择不当,会增加渗漏损失, 降低水资源利用效率。寒冷地区未考虑冻胀影响,渠 道衬砌在冻融循环作用下易开裂剥落,缩短工程寿命。 消能设施设计不合理, 如陡坡段未设置合适消力池, 可能引发下游渠床冲刷破坏。交叉建筑物如渡槽、涵 洞等与渠道衔接不顺畅,导致水流紊乱,增加局部水 头损失。设计图纸标注模糊或存在矛盾, 施工时易产 生误解,造成返工或质量隐患。频繁的设计变更打乱 施工计划,增加成本并延误工期,甚至影响整体工程协调性。

1.2 施工难度大

山区或丘陵地带地形陡峭, 机械进场困难, 开挖 作业空间受限, 土石方运输效率低下。高地下水位区 段需采取持续降水措施,但降水不当可能引发周边地 基沉降,增加支护难度和成本。软弱地基处理技术要 求高,如采用换填法需大量合格土料,而桩基施工周 期长,影响整体讲度。长距离线性工程涉及大量土方 调配, 若运输路线规划不合理, 易造成施工延误和成 本超支[1]。穿越村镇或农田时,征地拆迁协调难度大, 可能因补偿纠纷导致施工中断。冬季低温条件下,混 凝土浇筑需采取保温措施, 否则易出现冻害, 影响强 度和耐久性。石方开挖遇到坚硬岩层时, 爆破作业需 严格控制装药量和起爆顺序, 否则可能破坏周边结构或 引发安全事故。渠道衬砌多为薄壁结构, 大面积施工 时易因温度应力或收缩变形产生裂缝,影响防渗效果。 多工种交叉作业,如土建、防渗、金属结构安装等工 序衔接不当,可能造成施工混乱,增加质量控制难度。

1.3 材料选择不当

工程材料选用不当会直接影响渠道的耐久性和功能性,水泥品种与施工环境不匹配,如在寒冷地区使用普通硅酸盐水泥而未掺加防冻剂,混凝土抗冻性能不足,易在冻融作用下剥落。骨料含泥量超标或级配不良,导致混凝土强度降低、收缩增大,增加开裂风险。外加剂使用不当,如缓凝剂过量导致混凝土长时间不凝结,或减水剂配伍错误引发离析泌水。防渗土工膜厚度不足或抗穿刺性能差,在回填土石方时易被尖锐物刺穿,失去防渗作用。砌石材料风化严重或强度不足,在长期水流冲刷下可能松动脱落,影响渠道稳定

性。钢筋保护层垫块强度低或间距过大,导致钢筋移位,降低结构承载能力。伸缩缝填料弹性不足或粘结性能差,无法适应温度变化引起的伸缩变形,造成渗漏或结构破坏。砂浆配合比设计不合理,如水泥用量过少或砂率过高,降低砌体粘结强度,影响整体稳定性。防腐涂层耐候性差,在长期紫外线照射下老化脆裂,失去对金属结构的保护作用。材料进场检验不严格,如未按规定抽样检测,可能导致不合格材料用于工程,埋下质量隐患。

1.4 施工质量问题

施工质量控制不严会导致多种质量缺陷,影响渠 道工程的安全性和使用寿命。土方回填压实度不足, 使得渠道基础在荷载作用下发生沉降, 导致衬砌结构 开裂变形。混凝土振捣不充分,内部存在气泡或空洞, 降低抗渗性和耐久性,表面出现蜂窝麻面影响外观质 量。衬砌面板养护不及时或方法不当,如未覆盖保湿 或养护时间不足, 混凝土因水分快速蒸发产生干缩裂 缝。伸缩缝施工不规范,如止水带安装偏位或固定不牢, 导致接缝处渗漏,影响防渗效果。边坡修整不符合设 计要求, 如坡比偏差过大, 可能改变水流形态, 增加局 部冲刷风险 [2]。砌石工程砂浆不饱满,存在通缝或假 缝,降低砌体整体性和抗冲刷能力。钢筋安装位置偏差, 如保护层厚度不足或间距过大, 削弱结构抗弯抗剪性 能。防渗层施工接缝处理粗糙,如土工膜焊接不严密 或粘结剂涂刷不均,形成渗漏通道。测量放线误差较大, 使得渠道轴线偏离设计位置,影响水流顺畅性和工程 整体协调性。隐蔽工程如地基处理、防渗层铺设等 验收不到位,可能掩盖质量缺陷,增加后期维修难度。

2 水利渠道工程施工问题的解决措施

2.1 加强设计管理

水利渠道工程设计质量的提升需要建立全过程质量控制体系。前期勘察阶段应采用无人机航测和三维激光扫描技术,获取高精度地形数据,避免传统测量方法导致的误差。地质勘探点间距应加密布置,特别关注软弱夹层和地下水分布情况,为地基处理提供可靠依据。水力计算应采用CFD流体仿真技术,模拟不同工况下的水流形态,优化渠道纵坡和断面设计。结构设计需考虑极端气候影响,在冻土区采用保温防油、结构,在强震区增加抗震构造措施。防渗系统设计应进行多方案比选,综合评估土工膜、混凝土衬砌等不同方案的耐久性和经济性。交叉建筑物设计要运用BIM技术进行碰撞检测,确保与主体结构的协调性。建立设计复核制度,组织专家对关键节点设计进行专项审查。推行标准化设计,建立典型渠道断面数据库,提高设计效率。实施设计回访制度,定期对已建工程

进行跟踪评估,将运行数据反馈至设计优化。引入数字化设计平台,实现各专业协同作业,减少设计冲突。 建立设计人员考核机制,将工程质量与设计绩效挂钩, 增强责任意识。

2.2 加强前期准备工作

工程实施前的准备工作质量直接影响施工进度和 工程质量。地质补勘应采用综合物探方法, 重点查明 不良地质段的分布范围和特性。施工组织设计需运用 BIM 技术进行施工模拟,优化机械配置和工序安排。临 时工程规划要科学合理,施工便道应满足重载车辆通 行要求, 临时排水系统要能抵御暴雨侵袭。征地拆迁 工作要提前启动,建立多方协调机制,制定公平合理 的补偿标准[3]。材料采购计划应详细编制,对关键材 料建立备用供应渠道。施工测量控制网需采用 GPS 静 杰测量方法建立,并进行闭合校验。施工机械要提前 检修保养,对操作人员进行专项培训。临时用电系统 要专业设计,确保电力供应稳定可靠。建立完善的质 量保证体系,编制详细的施工质量控制计划。组织施 工图纸会审,提前发现并解决设计问题。编制应急预案, 针对可能发生的地质灾害、设备故障等情况制定应对 措施。与当地气象部门建立联系,及时获取天气预报 信息。开展施工前的技术交底,确保所有参建人员明 确技术标准和质量要求。

2.3 提高施工技术水平

现代施工技术的应用是保证渠道工程质量的关键。 土方工程应采用智能化施工机械,如安装 GPS 定位系 统的挖掘机,实现精准开挖。高边坡施工要采用预应 力锚杆配合喷射混凝土支护,确保边坡稳定。软弱地 基处理可选用真空预压法, 大幅提高地基承载力。混 凝土施工应采用自动化拌和系统, 精确控制配合比。 衬砌作业推广使用滑模摊铺机,实现混凝土的连续浇 筑。伸缩缝施工采用新型高分子止水材料,提高接缝 的密封性能。防渗层铺设应用热熔焊接技术,确保接 缝质量。石方爆破采用数码电子雷管,实现精确延时 控制。冬季施工采用暖棚法,配合防冻剂使用,保证 混凝土质量。引入施工监控系统,实时监测混凝土温度、 地基沉降等关键参数。推广使用自密实混凝土,减少 振捣作业难度。采用三维激光扫描技术进行施工质量 检测,提高验收精度。研发应用渠道修复机器人,实 现破损部位的精准修补。建立施工工艺创新奖励机制, 鼓励技术人员改进施工方法。

2.4 严格材料管理

工程材料的质量控制应建立全过程监管体系。原 材料采购要建立合格供应商名录,实行公开招标采购。 水泥进场必须检测安定性、凝结时间和强度指标,不 同批次要分开存放。骨料要严格控制含泥量和级配,设置专门的清洗设备。钢筋必须进行力学性能试验,并检查表面锈蚀情况。土工膜要检测厚度、拉伸强度和抗穿刺性能,仓储时避免阳光直射。外加剂使用前必须进行适应性试验,确保与水泥相容。混凝土试块制作要规范,养护条件必须符合标准要求。建立材料追溯制度,每批材料都要保留完整的质量证明文件^[4]。现场材料堆放要分类管理,设置明显的标识标牌。钢筋加工要采用数控设备,确保尺寸精度。建立材料使用台账,实时掌握材料消耗情况。对关键材料实行驻厂监造,从源头把控质量。定期对材料管理人员进行培训,增强质量意识。建立材料质量奖惩制度,对违规行为严肃处理。运用物联网技术,实现材料库存的智能化管理。

2.5 加强施工质量管理

工程质量管控需要建立多层级的管理体系。实行首件验收制度,每个分项工程开工前都要制作样板段。混凝土施工要严格控制入模温度,夏季采取降温措施,冬季做好保温养护。模板工程必须保证刚度和稳定性,防止跑模变形。钢筋安装要采用定位卡具,确保保护层厚度准确。衬砌施工要控制浇筑速度,避免冷缝产生。防渗层施工后必须进行完整性检测,发现缺陷及时修补。建立质量责任追溯制度,每道工序都要记录操作人员信息。实行隐蔽工程举牌验收制度,留存影像资料。配备先进的检测设备,如钢筋扫描仪、回弹仪等。建立质量巡查制度,项目经理要定期带队检查。开展质量评比活动,对优秀班组给予奖励。建立质量问题台账,实行闭环管理。运用信息化手段,实现质量数据的实时采集和分析。聘请第三方检测机构,对关键部位进行独立检测。建立质量预警机制,及时发现并处理质量隐患。

2.6 加强沟通协调

工程参建各方的有效沟通能保障项目顺利地实施。建立周例会制度,及时协调解决施工中的问题。运用项目管理软件,实现各方信息的实时共享。设计变更必须履行书面程序,避免口头指令造成的误解。与当地政府保持密切沟通,及时解决征地拆迁等问题。建立应急联络机制,确保突发事件能快速响应。定期组织现场协调会,解决各专业交叉施工的矛盾。与监理单位建立联合检查制度,共同把好质量关。与材料供应商保持畅通联系,确保材料供应及时。建立施工信息公示制度,让所有参建人员了解工程进展。与当地村民建立沟通渠道,及时处理施工扰民问题。运用BIM 协同平台,实现设计、施工各方的可视化交流。建立问题反馈快速通道,确保基层问题能及时上报。定期向业主汇报工程进展,保持信息透明。建立施工协

调微信群,提高沟通效率。制定详细的交接制度,确保工序衔接顺畅。组织团队建设活动,增强各方的协作意识。

2.7 加强安全教育

安全生产管理必须贯穿工程施工全过程。建立三 级安全教育体系,确保每位进场人员都经过培训。特 种作业人员必须持证上岗,定期进行复审考核。施工现 场要设置完善的安全防护设施,临边洞口必须封闭 [6]。 施工机械要定期检修,操作人员要熟悉设备性能。高 处作业必须系挂安全带,设置安全防护网。临时用电 系统要符合规范,实行三级配电两级保护。爆破作业 要严格审批,设置足够的安全警戒区。雨季施工要做 好防雷防电措施,配备必要的排水设备。开展安全应 急演练, 提高突发事故处置能力。建立安全风险分级 管控制度,重大危险源要重点监控。实行安全巡查制度, 专职安全员要每日检查。建立安全奖惩机制,对违规 行为严肃处理。运用 VR 技术开展安全培训,增强教育 效果。设置安全文化宣传栏,营造安全生产氛围[7]。 建立工人健康档案, 定期进行职业健康检查。配备足 够的消防器材,组织消防知识培训。建立安全事故报 告制度,严格执行"四不放过"原则。运用智能监控 系统,实时监测施工现场安全状况。

3 结束语

水利渠道工程施工涉及多个方面的问题,需要综合运用多种策略加以应对。未来,随着科技的进步和社会的发展,水利渠道工程将迎来更加广阔的发展空间。持续改进和完善现有方法,将为水利工程带来新的活力与发展机遇。

参考文献:

[1] 孙斌,任东.探讨水利渠道工程施工中的常见问题及解决措施[J].中小企业管理与科技(下旬刊),2019(04):16-17.

[2] 晏得勋.水利渠道工程施工中常见问题的处理方式探讨[]]. 中国标准化,2019(04):82-83.

[3] 朱岳生. 水利渠道工程施工常见问题及解决措施[J]. 吉林农业,2018(14):67.

[4] 孙琪.浅谈水利渠道工程施工中常见问题的解决措施[]]. 黑龙江科技信息,2016(35):202.

[5] 邱志军.水利渠道工程施工常见问题及解决措施[J].科技展望,2016,26(01):99.

[6] 马学龙.水利渠道工程施工中常见的问题及解决措施 [[]. 甘肃农业,2015(22):56,60.

[7] 陈建华. 探析水利渠道工程施工中常见问题的解决措施 []]. 中外企业家,2013(16):195.