地下泵站基坑支护结构设计及计算分析

韦 丹

(广东省水科勘测设计院有限公司,广东 广州 510635)

摘 要 以广州天河区某新建地下泵站的基坑支护为例,根据周边环境以及地质条件,基坑采用灌注桩、内支撑和中立柱进行支护,利用理正深基坑软件和MIDAS-GTS 软件进行计算,分析了围护结构和内支撑的内力,并根据计算结果合理配筋,同时分析基坑的整体抗倾覆稳定性、坑内抗隆起、整体滑动稳定性以及基坑变形和沉降,以期对确保基坑开挖过程的安全性有所裨益,进而减少基坑开挖对附近隧道、燃气管线、给水管线的影响。

关键词 基坑支护计算;灌注桩;内支撑;内力值;变形沉降

中图分类号: TV67

文献标志码: A

DOI:10.3969/j.issn.2097-3365.2025.28.002

0 引言

因城市排涝建设需要,新建地下泵站抽排洪水, 地下泵站结构需进行基坑开挖及支护,基坑临近珠江 及河涌,淤泥质砂层较厚,且基坑周围存在地下隧道 和管线,场地条件较为复杂。为保证基坑安全,需进 行计算并合理设计基坑支护结构后再进行施工。本文 利用理正深基坑软件计算基坑开挖过程中支护结构内 力,根据内力结果进行配筋,同时计算基坑的整体抗 倾覆稳定性、抗隆起、整体滑动稳定性,并借助有限 元软件 MIDAS-GTS 建立结构一地基二维模型,计算基 坑开挖后的变形和沉降值。

1 工程概况

1.1 基坑规模及周边环境

该项目利用地泵站将暗渠来水抽排至附近河涌后,经河涌汇入珠江。泵站同紧邻的地下水闸一同开挖,本文主要讨论地下泵站基坑支护。泵站为1 层地下室,总占地面积约为1 290 m²,设计流量为30 m³/s,基坑泵室段开挖深度约为11.2 m,进水池段开挖深度为7.5 m。基坑北侧约9 m 为现状隧道,北侧约 $3\sim5$ m 为燃气管线和给水管线,对变形较为敏感,南侧65 m临近珠江;西侧15 m 为临时码头;东侧紧邻河涌。基坑支护结构设计和周边环境详见图1。

1.2 场地地质水文条件

场区地貌是珠江三角洲冲积平原,珠江支流一级阶地,地势低平,地面标高 $3.8 \sim 4.0$ m。各岩土设计参数如表 1 所示。基坑离珠江约 65 m,场区地质砂层厚度约为 7 m,透水性良好,孔隙水丰富。地下水补给主要来源为大气降水和周边水系,地下水补给来源充足。地下水稳定水位埋深在 $-1.30 \sim 4.50$ m。

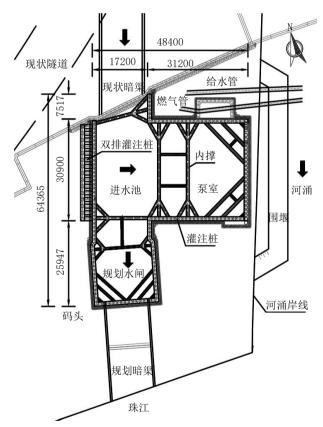


图 1 基坑支护结构和周边环境平面图 (单位: mm)

2 基坑支护设计

2.1 基坑支护计算原则

围护结构设计和计算原则需满足相关技术规范^[1]中的相关要求。基坑最大开挖深度为11.2 m,基坑变形控制等级、基坑安全等级均为1级,基坑重要性系数为1.1。

表 1	岩	+	沿	计	糸	粘
1X I	A	\perp	·ĸ	. 1	///	奴

岩土名称	粘聚 力 kPa	内摩擦 角°	重度 kN/m³	压缩模量 MPa
杂填土	5	15	19	2.92
淤泥质细砂	0	24	19.5	5.00
淤泥	8	6	16.5	2.70
淤泥质细砂	0	24	19.5	5.00
强风化泥质粉砂岩	50	32	21	_
中风化泥质粉砂岩	300	35	24	_

基坑围护结构变形根据《建筑基坑支护技术规程》 (JGJ 120-2012)中的相关要求。采用基坑最大开挖 深度为11.2 m中的"竖向弹性地基梁法"进行计算; 施工阶段坑外土压力采用主动压力,黏性土按水土合 算、砂性土按水土分算^[2];按"先变形、后支撑"的 原则,使用增量法^[3] 模拟基坑开挖、加撑的工况,算出支护结构各个阶段的内力标准值。支护结构及支撑体系作为临时结构时仅验算承载能力。

2.2 基坑支护方案

基坑东侧泵室段深为11.2 m, 支护方案采用直径为1 000 mm, 间距为1 200 mm 的灌注桩, 冠梁为1 200×1000 mm, 腰梁为1 000×1 000 mm, 中立柱为边长600 mm 的格构柱, 第一道混凝土支撑为800×1 000 mm, 距离地面为1.3 m; 第二道支撑为1 000×1 000 mm, 距离第一道支撑5.5 m, 坑底施工空间为3.9 m。

基坑西侧进水池段深 $7.5\,\mathrm{m}$,现状条件难以布置内支撑,因此采用 $\Phi1\,000@1\,200\,\mathrm{mm}$ 双排桩进行支护。

项目靠近珠江及河涌,基坑采用双排 Φ 600@400 mm 搅拌桩形成封闭的止水帷幕。泵室段基坑支护结构典型断面如图 2 所示。

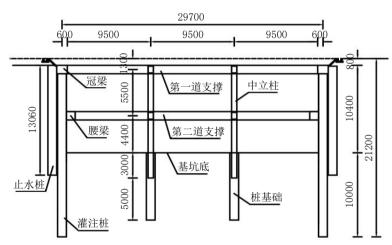


图 2 泵室段基坑支护结构典型断面图 (单位: mm)

2.3 基坑支护计算结果

1. 基坑安全系数分析。根据《建筑基坑支护技术规程》(JGJ 120-2012)中的要求,计算基坑支护安全系数,计算式(1)中整体滑动稳定安全系数 $K_s \ge 1.35$,式(2)中抗倾覆稳定安全系数 $K_{em} > 1.25$,式(3)中抗隆起安全系数 $K_{he} > 1.8$ 。

$$K_{s,j} = \frac{\sum \left\{ c_{j} l_{j} + \left[(q_{j} l_{j} + \Delta G_{j}) \cos \theta_{j} - u_{j} l_{j} \right] \tan \varphi_{j} \right\}}{+ \sum R_{k,k}^{'} \left[\cos(\theta_{j} + a_{k}) + \psi_{v} \right] / s_{x,k}}$$

$$\frac{\sum (q_{j} b_{j} + \Delta G_{j}) \sin \theta_{j}}{\sum E_{pk} z_{p2}} \geq K_{em}$$
(2)

$$\frac{\gamma_{m2}DN_q + cN_c}{\gamma_{m1}(h+D) + q_0} \ge K_{he} \tag{3}$$

通过理正深基坑计算,各项安全系数均满足规范 要求,计算结果详见表 2。

表 2 基坑安全系数

部位	泵室	进水池
整体滑动稳定安全系数 K_s	3.64	4. 45
抗倾覆稳定安全系数 Kem	9.03	10.68
抗隆起安全系数 K_{he}	15.61	51. 44

2. 灌注桩受力分析。利用理正深基坑软件对基坑进行单元计算,得到分层开挖和加撑后每个工况的基坑内外侧土反力、弯矩及剪力值,提取基坑内力的包络值对灌注桩进行配筋,内力计算结果以及配筋详见表 3。

表 3 灌注桩内力设计值及配筋

部位	泵室	进水池 前排桩	进水池 后排桩
弯矩设计值 kN•m	1 642	1 474	507
剪力设计值 kN	842	678	151
轴力设计值 kN	_	103	103
灌注桩钢筋	28E25	28E25	20E25

3. 支撑、冠梁、腰梁受力分析。内支撑水平向受土压力传来轴力,竖向受自重以及施工线荷载 1 kN/m;冠梁、腰梁水平向受支撑传来的分布荷载 q,受力简图如图 3 和图 4,计算出弯矩、剪力和轴力。支撑按偏心受压梁截面配筋,冠梁、腰梁按纯弯梁截面配筋,计算结果详见表 4。

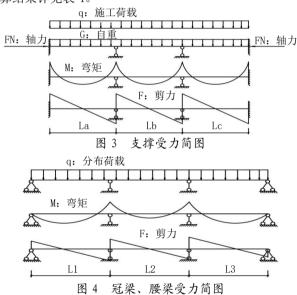


表 4 支撑、冠梁、腰梁内力设计值及配筋

构件	弯矩 /	剪力 /	轴力/	梁上纵筋 +
149 []	kN • m	kN	kN	梁下纵筋
第一道撑	293	162	1 463	7E25+7E25
第二道撑	274	175	2 132	7E25+7E25
冠梁	1 358	1 432	_	9E25+9E25
腰梁	1 597	1 996		11E28+11E28

4. 中立柱受力分析。根据《建筑基坑支护技术规程》(JGJ 120-2012),中立柱受自重、支撑自重和支撑轴力的 10%。计算荷载设计值为 2 069.42 kN。最不利位置稳定应力为 99 N/mm²,最不利位置强度应力为 93 N/mm²,中立柱的稳定和强度满足设计要求。

3 基坑开挖引起变形沉降结果

选取基坑典型断面,利用 MIDAS-GTS 建立灌注桩 + 内支撑的二维模型。

因灌注桩间距为1 200 mm, 因此模型中需按刚度

等效为地连墙进行处理,等刚度计算公式[4]。

$$1/12 \text{ (D+t) } \text{h}^3 = 1/64\pi \text{D}^4$$
 (4)

$$h = 0.838D^{3} \sqrt{\frac{1}{1 + \frac{1}{D}}}$$
 (5)

其中,h为等效的地连墙的厚度,D为灌注桩的直径,t为灌注桩的间距。

冠梁、支撑按梁单元,材料参数详见表 5; 土层采用修正摩尔一库伦模型,岩土参数详见表 1。

表 5 混凝土材料参数

序号	材料	重度 (kN/m³)	弹性模量 (MPa)	泊松比 μ
1	C30 混凝土	25.0	30 000	0.2

经计算,基坑最大侧向变形为 $9.52\,$ mm,满足监测规范 $^{[5]}$ 小于 $25\,$ mm 的要求。基坑土体最大沉降值为 $25.42\,$ mm,满足监测规范 $^{[6]}$ 小于 $30\,$ mm 的要求。

4 结论

1. 对地下泵站的基坑支护结构进行合理的设计,采用灌注桩+内支撑+中立柱的支护方案,运用理正基坑软件计算基坑的各项安全系数均满足建筑基坑支护技术规程的要求,计算出基坑支护结构的弯矩、剪力以及轴力值等,根据内力结果对支护结构进行配筋,各个构件的配筋合理,满足混凝土结构设计标准^[7]要求,保证基坑施工安全,造价经济。

2. 通过有限元软件对基坑变形、沉降进行建模计算,保证基坑自身的变形和沉降小于规范要求,确保周围建筑物以及管线不发生较大的变形沉降,维持周围建筑物以及管线的安全正常运行。

参考文献:

[1] 中华人民共和国住房和城乡建设部.建筑基坑支护技术规程:JGJ 120-2012[S]. 北京:中国建筑工业出版社,2012. [2] 商兆涛,汪文达,周刚,等.饱和细砂地层基坑开挖水土压力分布特征及水土分合算比较[J].合肥工业大学学报(自然科学版),2022(05):69-73.

[3] 杨光华.深基坑支护结构的实用计算方法及其应用[J]. 岩土力学,2004(12):1885-1896.

[4] 曹祚省,崔江余,叶焱,等.刚度等效法在双排桩支护 计算中的应用 [[]. 施工技术,2016(11):233-237.

[5] 中华人民共和国住房和城乡建设部,国家市场监督管理总局.建筑基坑工程监测技术标准:GB 50497—2019[S].北京:中国计划出版社,2019.

[6] 同[5].

[7] 中华人民共和国住房和城乡建设部. 混凝土结构设计标准: GB/T 50010-2010[S]. 北京: 中国建筑工业出版社, 2010.