Broad Review Of Scientific Stories

一种机器人控制系统软件框架

许志瑜

(合肥科大智能机器人技术有限公司南京分公司, 江苏 南京 210000)

摘 要 本文主要介绍了一种用于机器人控制系统中应用程序的开发框架 DAREE。应用程序中每个 Applet 构成一个业务控制单元,每个业务单元由组件对象组成,实现基本的控制业务需求。同时该开发框架提供了一系列的基本功能模块,如消息队列、定时器等基础服务,实现应用程序的快速开发。

关键词 DAREE Applet 消息队列 定时器

中图分类号: TP249

文献标识码: A

文章编号: 1007-0745(2021)02-0011-02

1 前言

近年来,机器人控制系统要求越来越复杂,为了简化 应用程序开发过程,提高应用程序开发效率,提出一种应 用程序开发框架 DAREE,将控制系统中的业务进行管理和 拆分,将系统资源进行统一规划。

2 DAREE

DAREE(Distribution Automation Runtime Execute Environment) 为 Applet 的运行提供一套基本的运行环境,并向应用程序提供一系列服务类库^[1],该类库实现了对操作系统服务的封装。同时该框架实现了一套设备抽象层,提高应用程序的可移植性(见图 2)。

DAREE 建立在 Linux 操作系统之上,以下是概要性描述:

- (1) DAREE 基于嵌入式 Linux, 分成内核空间和用户空间;
 - (2) 最底层是硬件层,控制系统中的一些外围的器件;
 - (3) 内核空间为设备驱动层;
- (4)用户空间分为三层,PAL、SAL、Applet,基于组件的设计思想;
- (5) PAL 是 Platform Access Layer 的缩写,是移植层,操作系统相关;
- (6) SAL 是 Shared Access Layer 的缩写,包含一系列的 类库;
 - (7)应用程序层,不同的业务只需要开发不同的 Applet;
 - (8) 3rd 表示是第三方开发的组件;
 - (9)用 C语言进行设计[2],增强平台兼容性。

2.1 组件对象

组件对象分为静态和动态两种方式,静态组件的代码和框架一起参与编译,动态组件的代码独立编译。两种组件使用上并不区分,动态组件的存在是为了将组件的开发和Applet 进行解耦,提高组件对象的灵活性和功能扩展性^[3]。

2.2 Applet

Applet 是 DAREE 上开发应用程序的最小单位,是一个业务逻辑的功能集合。Applet 有 Stop、Starting、Run、

Closing、Terminating 这五种状态。见下图:

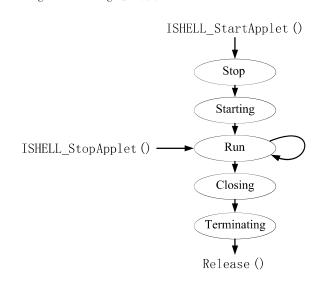


图 1 Applet 状态迁移图

- (1) 一个 Applet 开始于 StartApplet,将 Applet 处于 Stop 状态,并开始创建 Applet;
- (2) 创建动作完成后, Applet 处于 Starting 状态, 并收到 EVT_APP_START 事件;
- (3) Applet 处理完 EVT_APP_START 后, 进入 Run 状态, 直到用户调用 CloseApplet;
 - (4)Applet进入Closing状态,收到EVT_APP_STOP事件;
- (5) 最后 Applet 会进入 Terminating 状态,完成 Applet 和内部资源的释放,结束 Applet。

2.3 消息队列

该应用程序框架采用基于消息驱动的方式运行,Applet 通过消息接口类,可以快速实现消息队列功能。用户只需要通过 IHandle 接口生产消息,并通过 Send 函数将消息发送出去,系统通过消息中的信息找到该消息的事件处理函数进行处理。

2.4 配置管理

配置管理接口 IConfig, 用于保存各个模块需要保存的

Broad Review Of Scientific Stories

DAREE 整体框架	
APPLet 应用程序	
AP Core AP LogServer APD1C APNetManager APMonitor 3rd	用户空间
Share Access Layer(SAL)	
IVector IMap IModel IMessageQueue 3rd	
IApplet ILooper IHandler IRunnable IConfig	
Share Access Layer(PAL)	用户空间
IShell IShareMem IFile ISocket	
IThread IPort IModule IDB	
StuLibFuncs Timer Mutex Log	
Linus Kernel	
FPGA Driver UART Driver	内核空间
Handware	
FPGA UART	硬件

图 2 DAREE 系统架构图

配置信息,该框架提供了统一的配置管理接口 IConfig, 并通过文件的形式进行配置信息的保存,系统为各个模块分配了统一的标签,模块通过标签获得私有的配置信息。

2.5 定时器

定时器在 Applet 开发过程中是一种常用功能,提供了延迟服务和异步处理的功能。Timer 的实现是通过生成 Message 并带上时间参数,加入到 IMessageQueue 队列中,实现了 Timer 的延时处理能力。

2.6 异步事件

异步事件 Resume 是 DAREE 提供的另一个异步事件处理功能,比如用户需要读取一个大数据量文件,可以通过 Resume 功能分步进行读取。本框架将 Resume 异步事件设计在 DAREE 的主线程空闲时进行操作,避免对主业务功能的影响。

2.7 日志管理

日志管理是"查看我关心的信息"。本系统日志管理通过日志等级和过滤字符完成日志管理,通过LOG_V,LOG_D,LOG_I,LOG_W,LOG_E进行日志的等级输出,并通过过滤字符串进行日志过滤来达到日志控制的目的。

2.8 设备控制接口

本系统由IPort接口实现统一的设备控制,并为数据传输提供了一套通用的接口函数,如Read、Write、

GetLastError 等等。通过 IPort 接口,可以打开一个设备,通过 Read 接口进行设备的读取,通过 Write 进行设备的写人操作,实现对一个设备的控制操作。

2.9 内存管理

本系统实现了一套内存检测机制,当 Applet 退出时,判断 Applet 是否有内存泄漏现象,如果有则打印出消息,供工程师进行检查。实现原理是在应用程序分配内存时,给内存打上标记,根据标记信息判断是否有内存泄漏。

3 总结

本文提出了一种用于机器人控制系统中应用程序的开发框架 DAREE, 该框架以 Applet 为单位管理业务功能模块,通过 DAREE 提供的系统接口,可以快速实现消息队列、定时器、异步事件处理、日志管理、内存管理等基础功能。

参考文献:

- [1] Stanley B. Lippman, Josée Lajoie, Barbara E. Moo 著 . C++ Primer (中文版 第 5 版) [M]. 北京: 电子工业出版社, 2013.
- [2] Stanley,B.,Lippman, 侯捷译. 深度探索 C++ 对象模型 [M]. 北京: 电子工业出版社,2012.
- [3] 埃里克·伽玛(Erich Gamma).设计模式:可复用面向对象软件的基础[M].北京:机械工业出版社,2019.