Π

基于 Civil 3D 的土方分层 建模及其在工程中的应用

罗斌

(中交一航局第四工程有限公司, 江西 南昌 330100)

摘 要 论文基于 Civil 3D 软件的强大功能以及与 BIM 软件的协同互通互导优势,通过软件在土石方填筑分层工 作中的应用,并结合实际施工现场,分析 Civil 3D 软件应用于土石方填筑工程中施工分层模型建立、施工现场资 源配置、施工方案的展示等方面的应用效果,致力于解决组织土石方施工管理过程中的重点、难点,进而发挥出 Civil 3D 软件在土石方工程施工管理中的应用价值。

关键词 Civil 3D; 土方分层建模; 测量; 放坡; 地块布局中图分类号: P258文献标识码: A

基于 Civil 3D 的土方分层建模与应用,可以实现从 施工现场到内业模型,又从内业模型到施工现场的动 态管理,实现土石方施工的提前测算与过程中的精准 把控,以及竣工之后的成果展示,方便组织者合理安 排施工力量,优化施工工艺,做好各工序间的有效搭接, 为实现流水化施工保驾护航。

1 工程背景

某大型土石方项目,占地面积广、填挖方量大、 各个工作面搭接多,每天完成工作区域很多,人员、 机械协调难度大。存在质量检验漏检复检的问题,并 且存在有的区域由于等待质量检验造成人员、机械窝 工的现象,质量检验工作开展难度很大。尤其在土方 填筑施工中,需要考虑土方量、土方运距、土方施工 顺序、土方调配等各方面因素,因此为了精确预测土 方量,合理规划填筑顺序,保证检验频率,实现流水 化施工,提前测算出每个区域、每一层的填筑面积与 填筑方量,提前绘制出土方分层图就显得特别重要。

2 Civil 3D 软件在土方施工中的应用

运用 Civil 3D 软件建立土石方填挖模型,计算工程 量的方法已经得到了业界的广泛认可。由于 Civil 3D 软 件具备强大的"曲面"功能,可以十分方便地基于边界、 特征线、等高线、图形对象、点编组、点文件等地形数据, 精准模拟场地原始地形,运用 Civil 3D 软件建立土石方 填挖模型,计算工程量的方法已经得到了业界的广泛 认可。土方量的计算正是基于多个曲面开展进行的, 在实际施工过程中,我们通过原始地形曲面与设计曲 面之间的差异自动计算出某个区域的差值,分析差值 后便可准确得出填方或挖方的土方工程量^[1]。 文章编号:1007-0745(2023)01-0010-03

2.1 Civil 3D 软件常用功能介绍

Autodesk Civil 3D 软件是 Autodesk 公司为土木与基 础设施行业提供的三维设计解决方案,适用于勘测、 场地规划、总图、道路、设计、水利工程、市政管网、 地质矿产等多个不同行业领域。Autodesk Civil 3D 功能 非常强大,能形成三维数字地形模型。利用数字地形 模型可直观、快速、准确地计算土方量、绘制纵横断 面图、查看三维模型等功能。同时 Autodesk Civil 3D 还 整合了 CAD、3Dmax 等软件,并具有强大的项目管理 功能,为土木建设工程提供了完整的解决方案。

Civil 3D 基本功能:

2.1.1 测量

Civil 3D 全面集成了勘测功能,可以直接导入原始 勘测数据,编辑勘测资料,自动创建勘测图形和曲面。 可以交互式地创建并编辑勘测图形顶点,发现并编辑 相交的特征线,避免潜在的问题,生成能够在项目中 直接使用的点、勘测图形和地形曲面。

2.1.2 放坡

Civil 3D 中的放坡是一项令人激动的功能,它包括 根据设计的放坡来自动创建一个曲面,并能计算体积。 放坡这项功能还能进行土方平衡,这对大规模土石方 工程非常有用。

2.1.3 地块布局

通过转换现有的 AutoCAD 实体生成地块,实现流 程的自动化。这样,如果一个地块发生变更,临近的 地块会自动反映变更情况。

2.1.4 土方量计算

利用复合体积算法或平均断面算法,更快速地计 算现有曲面和设计曲面之间的土方量。使用 Civil 3D 生

П

成土方调配图表,用以分析适合的挖填距离,要移动 的土方数量及移动方向,确定取土坑和弃土堆的可能 位置。

与传统土方计算方法相比,利用 Civil 3D 软件计算 土方量的方法更加便捷与准确。由于 Civil 3D 软件拥有 十分方便的"曲面放坡"功能与各种实体编辑能力,

其中"曲面放坡"功能可以实现根据任意面边线向上 或者向下放坡来自动创建一个曲面,并用这个边坡曲 面来计算边坡体积。有别于传统的土方计算方法很难 做到精确计算边坡土方量。另外,实体模型编辑功能 的大力运用,充分体现了未来三维建设取代传统二维 建设的趋势和方向^[2]。

在目前的施工过程中,我们充分运用 Civil 3D 软件 提前测算土方量,进行土方平衡,合理调配土方、选 择施工机械和人员排班,保障施工进度、减少了不必 要的资源浪费。

2.2 利用 Civil 3D 软件探究土方分层的思路 及实际应用

2.2.1 利用 Civil 3D 软件探究土方分层的思路

在土方填筑施工工程中,为了提前测算出每个施 工区域、每一层的填筑面积与填筑方量,确定检验验 收频率,及时准确地了解施工现场的施工信息,提前 绘制出土方分层图就显得尤为重要。土方分层图的绘 制,需要结合施工现场,根据土方填筑施工规范,科 学合理地进行绘制。经过现场实践发现,一般在填筑 的过程中存在三种情况,即:

1. 填筑体在填筑过程中填筑体顶面还未与设计填 筑体的"边坡"线相切,这个时候只是在填筑一些坟穴、 坑道。

2.填筑体在填筑过程中填筑体顶面一边还未与设 计填筑体的"边坡"线相切,一边已与设计填筑体的"边 坡"线相切,这个时候已经填筑了一定的高度,填筑 体一侧已经填筑到了"设计放坡线"位置。

3. 填筑体在填筑过程中填筑体顶面已经与设计填 筑体的两边"边坡"线相切,这个时候填筑体两侧都 已填筑到了"设计放坡线"位置。

用 Civil 3D 软件的语言来说,这三种情况为:

1. 填筑体曲面与原地形曲面相切。

2. 填筑体曲面既与原地形曲面相切,又与设计曲面相切。

3. 填筑体曲面与设计曲面相切。

针对这三种情况,我们在土方分层过程中采用以 下流程进行土方平面分层工作:

1. 利用原始测量数据,建立原始曲面模型,并找 到填筑范围内的最低点的高程,随后与设计完成面高 程进行对比,确定每层的分层顶高程,以及分层层数。

2. 利用设计完成面点云数据,建立设计曲面,并 用"曲面放坡"功能从设计曲面向原地面放坡,生成"填 筑体设计"模型。

3. 利用每层的分层顶面高程建立填筑曲面。

4. 分别用填筑曲面与原地形相切(即求两曲面间的最小距离);填筑曲面既与原地形相切,又与设计曲面相切;填筑曲面与设计曲面相切。分别生成三维多段线交线,并对于这三种情况,分别处理:

填筑曲面只与原地形相切时,生成三维多段线交 线就为这一层的分层边线,形成的闭合区域面积就为 这一层的分层面积。

填筑曲面既与原地形相切,又与设计曲面相切时, 两次分别生成三维多段线交线需要用"裁剪"命令与 "Join"命令将三维多段线连在一起,从而生成三维多 段线交线就为这一层的分层边线,形成的闭合区域面 积就为这一层的分层面积。

填筑曲面与设计曲面相切时,生成三维多段线交 线就为这一层的分层边线,形成的闭合区域面积就为 这一层的分层面积^[3]。

2.2.2 土方分层图的现场实际应用

1. 将绘制完成的土方"平面分层图"以"dxf"格 式输出,并导入 GPS 手簿, GPS 手簿自动识别"平面 分层图"中的三维多段边线后,现场测量人员根据"平 面分层图"进行每一层土方填筑的平面与高程的控制, 方便,快捷,并且充分体现了无纸化施工的优点。

2. 将绘制完成的土方"平面分层图"的图形、面 积输出,根据土方"平面分层图"提前生成施工台账, 编制施工进度计划,并根据质量验收规范计算出试验 检验频率,及时反馈给试验人员做好每一层填筑体的 压实度试验检验,并出试验检验报告^[4]。

3. 根据绘制完成的土方"平面分层图"汇总、分析。 利用土方"平面分层图"完成二维平面场布,然后在 Civil 3D 软件中用该层的闭合边线与上一层的闭合边线 做出每层的模型,测算出该层的土方量。也可以根据 平面土方分层图在 Revit 软件中用新建"族"功能建立 该层的分层模型,然后载入到 Revit 建筑样板中,直接 查询得到土方量,如表1 所示^[5]。

根据土方分层工作得到上述的图表后,完成了将 某施工区域土方填筑体细化分层的工作,利用分层的 模型与图表,提前计算得到了每一层的具体、准确的 工程量,以便合理规划填筑区域与填筑顺序,编制进 度计划,制定质量保证措施,保证检验频率,以实现 信息化、科学化、精细化施工管理¹⁶。

4. 根据利用土方"平面分层图",在SU软件与

科技博览

Π

土方计算台账							
序号	日期	施工类型	施工区域	层数	面积(m²)	报检验收标高(m)	土方量(m³)
1	2020.04.09	土方填筑	某施工区域	第1层	3085.35	147.10	2622.55
2	2020.04.10	土方填筑	某施工区域	第2层	6192.50	147.95	5263.63
3	2020.04.13	土方填筑	某施工区域	第3层	10337.36	148.80	8786.76
4	2020.04.16	土方填筑	某施工区域	第4层	14454.74	149.65	12286.53
5	2020.04.27	土方填筑	某施工区域	第5层	17854.61	150.50	15176.42
6	2020.04.30	土方填筑	某施工区域	第6层	21050.10	151.35	17892.59
7	2020.05.06	土方填筑	某施工区域	第7层	23790.60	152.20	20222.01
8	2020.05.08	土方填筑	某施工区域	第8层	25889.93	153.05	22006.44
9	2020.05.30	土方填筑	某施工区域	第9层	30068.17	153.90	25557.95
10	2020.06.03	土方填筑	某施工区域	第10层	32448.03	154.75	27580.82
11	2020.06.06	土方填筑	某施工区域	第11层	34603.87	155.60	29413.29
12	2020.06.10	土方填筑	某施工区域	第12层	36810.56	156.45	31288.97
13	2020.06.14	土方填筑	某施工区域	第13层	39118.93	157.30	33251.09
14	2020.06.18	土方填筑	某施工区域	第14层	41588.62	158.15	35350.33
15	2020.06.20	土方填筑	某施工区域	第15层	22138.09	159.00	18817.38

表1 土方量计算表

Lumion 软件中进行模型渲染与漫游视频的输出,完成 土方分层工作的方案展示。

3 基于 Civil 3D 的土方分层建模在土方工程 实践中的意义

与传统的土石方分层方法相比,基于 Civil 3D 的土 方分层建模技术突破了 CAD 二维分层的瓶颈,准确、 合理地模拟出了现场实际分层填筑过程,更加科学、 更加精确。由于传统的土石方填筑分层工作只能凭借 二维 CAD 软件,结合现场情况以一定的形状估算出每 层填筑体的区域,由于这个估算的二维区域与该层施 工的实际区域误差很大,因此根本不能与现场实际情 况相适应,也不能准确估算施工工程量,给科学组织 施工,调配施工力量带来了极大困难。基于 Civil 3D 的 土方分层建模技术很好地解决了上述的问题,由于其 土方分层工作是在三维模型的基础上绘制的,在 Civil 3D 软件中,我们利用填筑体曲面与原地形曲面在空间 上相切,就可以快速、准确的得到该层的理论填筑区域, 进而完成土方分层建模工作。土方分层建模及其模型 在工程中的应用优势为提前准确测算工程量与动态信 息管理:提前测算土方施工的工程量,及时发现各施 工区域的交叉作业问题,为管理者提供及时有效的第 一手可视化资料,以便科学组织施工,形成有序的流 水施工,有效地避免了施工资源浪费的情况。

体现了从施工现场到内业模型,又从内业模型到施工现场的动态信息管理思路。将 Civil 3D 的土方分层 建模技术与现场施工有效结合,充分发挥分层模型与 软件、设备之间的互通互导优势,通过软件快速、精 确的提取模型数据,导入施工设备进行现场高效作业, 从而达到 Civil 3D 的土方分层模型指导施工,提高了工 作效率,大大降低窝工率,避免资源浪费,缩短工期 的目的,为以后类似项目提供了思路。

参考文献:

[1] 赵威.AUTODESK Civil 3D 软件中道路设计和建模功能的特性应用 []]. 绿色环保建材, 2020(09):48.

- [2] 叶雪雷,郑斌.应用 Civil 3D 进行航道设计及土方
- 计算 [J]. 中国水运 (下半月),2016(03):247-248.

[3] 梁凯旋.Civil 3D 结合部件编辑器在水利工程中的应用[]]. 西北水电,2016(04):82-86,92.

[4] 王维勤.BIM 技术在现代建筑工程项目管理中的应用 [J]. 住宅与房地产,2020(21):124.

- [5] 同[2].
- [6] 李国超.建筑工程项目管理中 BIM 技术的融合与 应用 []]. 城市建设理论研究 (电子版),2020(06):24.